COMPUTER PROGRAMMING I

-3-

BIL2205

The Problem Solving Sequence

1. Problemi anlama(Understanding, Analyzing)
2. Bir çözüm yolu geliştirme (Designing)
3. Algoritma ve program yazma (Writing)
4. Tekrar tekrar test etme (Reviewing)

Polya, George (1957)‘How To Solve It’, Princeton University Press, $2^{\text {nd }}$ Edition

Algorithm

Algorithm, named after the 9th century scholar Ebu Abdullah Muhammed bin Musa El-Harezmi.
"An algorithm is;
Dany well-defined computational
 procedure that takes some value, or set of values, as input and produces some value, or set of values, as output.
\square an algorithm is thus a sequence of computational steps that transform the in input into the output."

Properties of an Algorithm

$>$ Valid Input/Output (Geçerli Giriş, Çıkış)
Finiteness (Sonluluk)
Definiteness (Kesinlik, açıklık)
Effectiveness (Etkinlik)

Valid Input/Output

\square Input: An algorithm has zero or more inputs, taken from a specified set of objects.

Output: An algorithm has one or more outputs, which have a specified relation to the inputs.

Finiteness (Sonluluk)

\square The algorithm must always terminate after a finite number of steps.

Definiteness (Kesinlik, Açıklık)

\square Each step must be precisely defined; the actions to be carried out must be rigorously and unambiguosly specified for each case.

Effectiveness

All operation to be performed must be sufficiently basic that they can can be done exactly and in finite length.

Expressing Algorithms

Step form

Pseude-code

Flow charts

Step Form

\square This form of algorithm is the simplest and consists of a sequence of numbered steps or points.
It is the easiest to learn at first since it is rather like a "to-do" list however once you have mastered other ways of stating algorithms you are unlikely to continue using this form.

Example:Make menemen for 1 person

1. START
2. Take 2 eggs
3. Take a spoon of margarine
4. Wash a tomatoe and cut into pieces
5. Wash a pepper and cut into slices
6. Put all in a saucepan
7. Burn the oven under the saucepan
8. Add some salt and black pepper

9. Until the desired stiffness is acquired

■Stir all with a spoon
10. Turn off the oven
11. STOP.

Example: Make a car move

1. START

2. Open the left front door with related key,
3. Sit on the driver's seat
4. Put the key in the keyplug
5. Adjust the driver's seat
6. Adjust the rearview mirror, left and right mirrors
7. Fasten the seat belt
8. Get the gear shift to neutral position in the middle
9. Put your left foot on the clutch pedal
10. Turn on the key until the engine starts
11. Get the gearshift to (upper left side)
12. Press on gas pedal with your right foot gently
13. Check the traffic by the mirrors
14. If is set, drop down hand brake
15. Slowly pull up your left foot from the clutch pedal
16. STOP.

Example: Make a tea

Where do you use algorithms in your life?

Putting together IKEA furniture
Looking up a word in the dictionary
Folding paper airplanes
Getting home from school
Solving a jigsaw puzzle Solving a sudoku puzzle Solving rubik's cube

Pseudocode

Pseudocedo is a generic way of describing an algorithm without use of any programming language syntax.

Example: Write an algorithm for finding the sum of

 two numbers.1. START
2. Read the first number
3. Read the second number
4. Find the sum of the two numbers
5. Print the sum of the numbers
6. STOP.

Example:

Step Form

1. START
2. Read the first number
3. Read the second number
4. Find the sum of the two numbers
5. Print the sum of the numbers
6. STOP.

Pseudocode

1. Start
2. Read X
3. $\operatorname{Read} Y$
4. $\operatorname{Sum} \leftarrow X+Y$
5. Print Sum
6. STOP.

Example: Calculating the area of a triangle

1. START
2. Read the base
3. Read the height
4. Multiply the base by the height, and then divide by 2
5. Print the result
6. STOP.

Example:

Step Form

1. START
2. Read the base
3. Read the height
4. Multiply the base by the height, and then divide by 2
5. Print the result
6. STOP.

Pseudocode

b-base, h-height, area-A

1. START
2. Read b
3. Read h
4. $A=(b * h) / 2$
5. Print A
6. STOP.

Example

Calculate the volume of a cylinder with given parameters

Step Form:

Pseudo-code:

1. Read the radius (r) and the height
2. Read r, h
(h) of the cylinder.
3. Volume $=\pi \times r^{2} \times h$
4. Calculate the volume.

Volume $=\pi \times \mathrm{r}^{2} \times \mathrm{h}$
3. Print volume.
3. Print out the volume.

Algorithms - Control Structures

\square Condition Controlling

\square Check if a given condition is TRUE of FALSE

IF (condition) THEN
things to do if (condition) is TRUE

Algorithms - Control Structures

\square Condition Controlling

IF (condition) THEN
things to do if (condition) is TRUE

1. START
2. READ yaș
3. IF (yaș > 50) THEN
3.1 PRINT "Amma da yașlıymıșsın..."
4. END.

Algorithms - Control Structures

\square Condition Controlling

1. START
2. READ yaș
3. IF (yaș > 50) THEN
3.1 PRINT"Amma da yașlymıșșın..."
3.2 PRINT "Bir ayağın çukurda sayilı..."
3.3 doğum_yllı $\leftarrow 2019$ - yaș
3.4 PRINT doğum_yllı
4. END.

Algorithms - Control Structures

\square Condition Controlling

\square Check if a given condition is TRUE of FALSE

IF (condition) THEN
things to do if (condition) is TRUE

ELSE

things to do if (condition) is FALSE

Algorithms - Control Structures

\square Condition Controlling

IF (condition) THEN
things to do if (condition) is TRUE

1. START
2. READ yaș
3. IF (yaș > 50) THEN
3.1 PRINT "Amma da yașliymıșsın..."

ELSE
3.2 PRINT "E daha genç sayılırsın..."
4. END.

Algorithms - Control Structures

Condition Controlling

1. START
2. READ yaș,
3. IF (yass > 50) THEN
3.1 PRINT "Amma da yașlıymıșsın..."
3.2 PRINT "Bir ayağın çukurda sayılır..."
3.3 PRINT (2019 - yaș)

ELSE
3.4 PRINT "E daha genç sayılırsın"
3.5 PRINT (2019 - yaș)
4. END.

Ex: Calculate the grade of a student with given midterm and final notes.

Grade $=$ Midterm $\times 40 \%+$ Final $\times 60 \%$

1. START
2. READ midterm, final
3. grade $=$ midterm $\times 0.4+$ final $\times 0.6$
4. IF (grade > 60) THEN
3.1 PRINT "Wow... You passed the class."

ELSE
3.2 PRINT "Sorry you FAILED !!!"
5. END.

What if "grade = 60"????

Ex: Calculate the grade of a student with given midterm and final notes.

Grade $=$ Midterm $\times 40 \%+$ Final $\times 60 \%$

1. START
2. READ midterm, final
3. grade $=$ midterm $\times 0.4+$ final $\times 0.6$
4. IF (grade >=60) THEN
3.1 PRINT "Wow... You passed the class."

ELSE
3.2 PRINT "Sorry you FAILED !!!"
5. END.

Ex: Calculate "yaș" for a given "doğum_yill". Comment as "genç", "orta-yașıı" or "ihtiyar"

1. START
2. READ doğum_yılı
3. yaș = 2019-doğum_yılı
4. IF (yaș < 25) THEN
3.1 PRINT "Genç..."

ELSE
IF (yaș < 50) THEN
3.2 PRINT "Orta Yașl...."

ELSE
3.3 PRINT "ihtiyar..."
5. END.

1. PRINT "Temperature of water? "
2. READ Temp
3. IF Temp $<=0$ THEN
4. PRINT "It's frozen"
5. ELSE IF Temp <= 12 THEN
6. PRINT "lt's cold"
7. ELSE IF Temp <= 25 THEN
8. PRINT " $1 t$'s warm"
9. ELSE IF Temp <= 75 THEN
10. PRINT "It's hot"
11. ELSE IF Temp <= 100 THEN
12. PRINT "It's very hot"
13. ELSE
14. PRINT "It's burning"
15. END.
1.PRINT "Temperature of water? "
16. READ Temp
17. IF Temp $<=0$ THEN
18. ELSE IF Temp $<=12$ THEN
19. ELSE IF Temp <= 25 THEN
20. ELSE IF Temp <= 75 THEN
21. ELSE IF Temp <= 100 THEN
22. ELSE
23. END.

PRINT "lt's cold"
PRINT "lt's warm"
PRINT "lt's hot"
PRINT "It's very hot" PRINT "It's burning"

Ex: Print the greatest of two given numbers

1. START
2. READ x, y
3. IF $(x>y)$ THEN
3.1 PRINT "X is greater than Y "

ELSE
3.2 PRINT " Y is greater than X "
4. END.

What if $x=y$???

Ex: Print the greatest of two given numbers

1. START
2. READ x, y
3. IF $(x=y)$ THEN
3.1 PRINT "They are Equal"

ELSE
3.2 IF ($x>y$) THEN PRINT " X is greater than Y "
3.3 ELSE PRINT " Y is greater than X "
4. END.

Ex: Calculate the grade of a student with given midterm and final notes.

34
Grade $=$ Midterm $\times 40 \%+$ Final $\times 60 \%$

- grade <60 => " F"
- $60<$ grade $<70=>$ "D"
- $70<$ grade $<80=>$ "C"
- $80<$ grade $<90=>" B "$
- grade $>90=>$ "A"

Ex: Calculate the grade of a student with given midterm and final notes.

Grade $=$ Midterm $\times 40 \%+$ Final $\times 60 \%$

1. START
2. READ midterm, final
3. grade $=$ midterm $\times 0.4+$ final $\times 0.6$
4. IF (grade < 60) THEN PRINT " F "
4.1 ELSE IF (grade < 70) THEN PRINT " D "
4.1.1 ELSE IF (grade < 80) THEN PRINT " C "
4.1.1.1 ELSE IF (grade < 90) THEN PRINT " B "
4.1.1.1.1 ELSE PRINT " A "
5. END.
