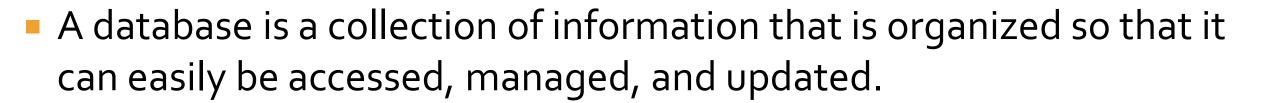


BIL3203 - DATABASE MANAGEMENT


Alper VAHAPLAR 2020 – 2021 ©

What is "Database"?

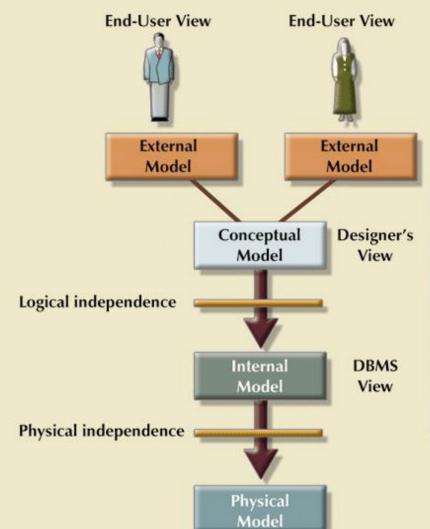
is a base that data are kept.

 A collection of regular and related data cleared from mistakes and redundancies, and stored to serve some applications.

Databases – History

- **1**960's
 - Data Collections, Hierarchical DBMS, network DBMS
- **1970's**
 - Relational Data Models
- **1**980's
 - RDBMS, Object Oriented Databases,
- 1990 2000's
 - XML Databases, Data Warehouses, Multimedia Databases, Data Mining

- Data modeling is a method used to define and analyze data requirements needed to support the business processes of an organization and by defining the data structures and the relationships between data elements.
- A data model is a collection of descriptions of data structures and their contained fields, together with the operations or functions that manipulate them.



- A data model,
 - is used to express the data in an understandable manner.
 - is a collection of concepts used to describe the structure of a database.
 - simple visualization of complex real world data.
 - helps the interaction among database designer, programmer and the end user.
 - provides different views for end users.
 - organizes the data for various types of users.

FIGURE 2.9

Data abstraction levels

1000	Degree of bstraction	Characteristics		
High	ER	Hardware-independent Software-independent		
Medium	Relational Object-Oriented	Hardware-independent Software-dependent		
Low	Network Hier <mark>arc</mark> hical	Hardware-dependent Software-dependent		

- External Model
 - End user view to the data environment.
- Conceptual Model
 - Represents the global view of whole database.
- Internal Model
 - View of database to the DBMS side
- Physical Model
 - Dependence on hardware and software.

Data Models – History

- Hierarchical
- Network
- Relational
- Entity Relationship
- Object Oriented

Hierarchical Data Models

- Arised to handle production projects with huge volume in data.
- "Tree" shape,
- Constructed of "segments" or "levels",
- Contains 1:M associations.

Hierarchical Data Models

Hierarchical Data Models

Advantages

- Pioneered to advanced data models,
- Provoked database approach,
- Many applications have been developed

Disadvantages

- Hard and complex to manage and implement,
- Limited application opportunity
- Lack of standards,
- No structural independency

Network Data Models

- Aims to define complex data relationships effectively,
- Works to improve the performance of database,
- Look similar to hierarchical model in shape,
- Collection of in 1:M associated records,
- Contains two types of records:
 - Owner (parent in hierarchical)
 - Member (child in hierarchical)

Network Data Models

A network data model **FIGURE** 2.2 **CUSTOMER SALESREP** 1:M 1:M 1:M Sales set Payment set Commission set **INVOICE PRODUCT PAYMENT** 1:M 1:M Inventory set Line set INV_LINE

Network Data Models

- Disadvantages
 - Generally cumbersome,
 - Programmer is overloaded for queries,
 - A structural change in databases couses big damages in programs,
 - Big delays in responses.

Relational Data Model

- The Relational Model,
- 1969 Edgar Frank Codd (IBM),
- "Very ingenious, but impractical" 1970 ,
- Conceptually simple and plain,
- Microcomputers can successfully implement,
- Hides the complexity of the model from the user.

Elements of Relational Data Models

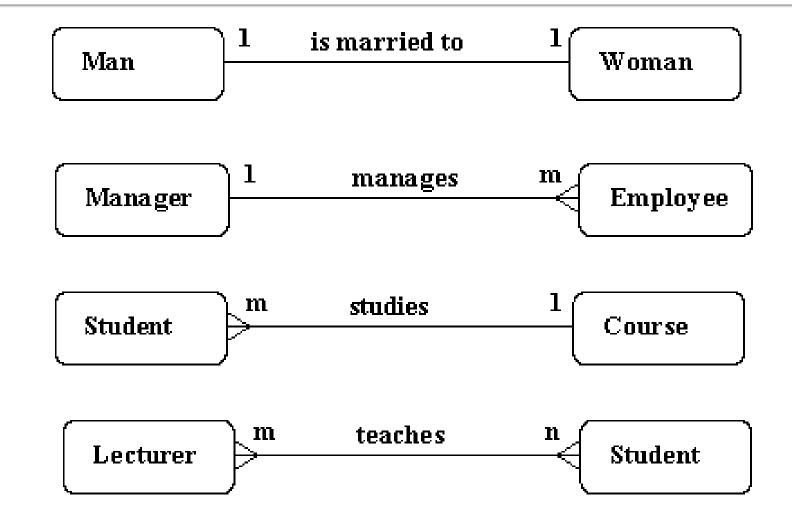
- Entity
 - An entity is any individual object or event in the system that we want to model and store information about.
- Attribute
 - A recordable property of an entity,
- Key

 A key is a data item/property that uniquely identifies individual occurrences or an entity type.

Elements of Relational Data Models

- Examples :
 - Entity
 - Student
 - Attribute
 - Student number, name, surname, birthdate, address, ...
 - Key
 - Student Number

Elements of Relational Data Models



Relationships:

- A relationship is an association of two or more entities where the association includes one entity from each participating entity type.
- Types of relationships:
 - One to one \rightarrow (1:1)
 - One to many \rightarrow (1:M)
 - Many to many \rightarrow (M:N)

Relationships – Examples

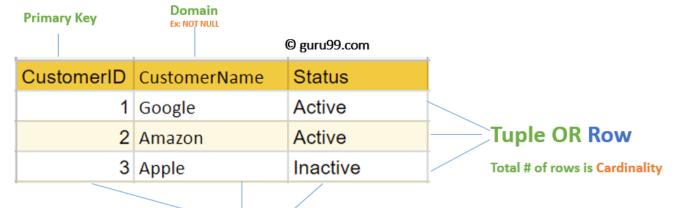
Relationships

A One-to-Many (1:M) Relationship: a PAINTER can paint many PAINTINGs; each PAINTING is painted by one PAINTER.

A Many-to-Many (M:N) Relationship: an EMPLOYEE can learn many SKILLs; each SKILL can be learned by many EMPLOYEEs.

A One-to-One (1:1) Relationship: an EMPLOYEE manages one STORE; each STORE is managed by one EMPLOYEE.

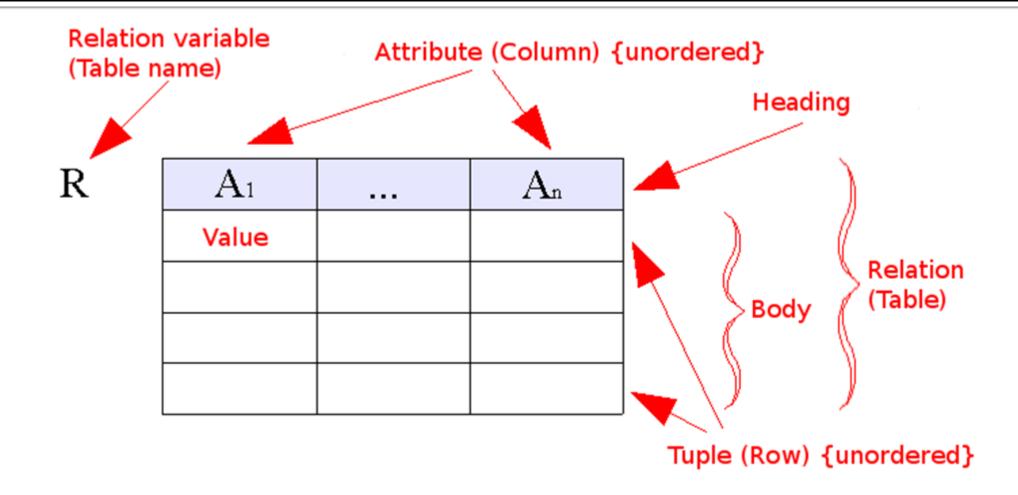
Homework


- Find entity couples in relationships of
 - **1:1**,
 - 1:M,
 - M:N association types,
- Define the attributes of these entities,
- Decide which is the key attribute.

Definitions...

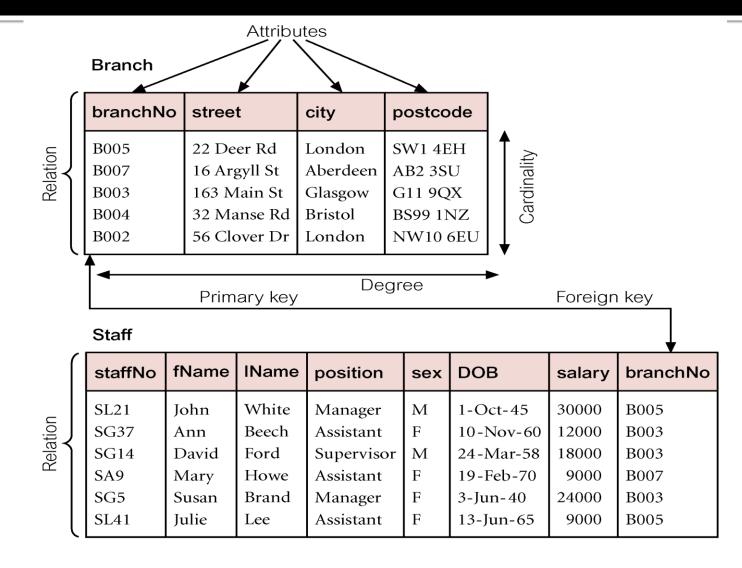
- Tuple :
 - Values constructing a row, (record)
- Degree :
 - Number of attributes in a tuple
- Cardinality:
 - Number of tuples in a relation
- Domain :
 - Set of possible values for an attribute

Table also called Relation



Column OR Attributes

Total # of column is Degree


Relational Data Model

Definitions...

Definitions...

	Öğrenciler		Attr	ribute 		
	No	AdSoyad	Sınıf	DogYili	DogYeri	
	123	Ali Veli	3	1982	Muğla	
	456	Hasan Hüseyin	3	1981	Afyon	
	789	Ayşe Fatma	2	1983	İzmir	
	102	Ahmet Mehmet	3	1981	Aydın	
	260	Fuat Murat	2	1983	Manisa	
Tuple	346	Lale Jale	3	1982	İzmir	
						'

Normalization is the process of organizing data in a database. This includes creating tables and establishing relationships between those tables according to rules designed both to protect the data and to make the database more flexible by eliminating redundancy and inconsistent dependency.

- Process of assigning attributes to entities.
- Aims:
 - reducing data redundancy,
 - eliminating anomalies,
 - producing controlled redundancy to link tables.

There are a few rules for database normalization. Each rule is called a "normal form." If the first rule is observed, the database is said to be in "first normal form." If the first three rules are observed, the database is considered to be in "third normal form." Although other levels of normalization are possible, third normal form is considered the highest level necessary for most applications.

TABLE	
5.1	

A Sample Report Layout

1993	

PROJ.	PROJECT	EMPLOYEE	EMPLOYEE	JOB	CHG/	HOURS	TOTAL
NUM.	NAME	NUMBER	NAME	CLASS.	HOUR	BILLED	CHARGE
5	Evergreen	103	June E. Arbough	Elec. Engineer	\$ 85.50	23.8	\$ 2,011.10
		101	John G. News	Database Designer	\$105.00	19.4	\$ 2,037.00
		105	Alice K. Johnson*	Database Designer	\$105.00	35.7	\$ 3,748.50
		106	William Smithfield	Programmer	\$ 35.75	12.6	\$ 450.45
		102	David H. Senior	Systems Analyst	\$ 96.75	23.8	\$ 2,302.65
				Subtotal			\$10,549.70
18	Amber Wave	114	Annelise Jones	Applications Designer	\$ 48.10	25.6	\$ 1,183.26
		118	James J. Frommer	General Support	\$ 18.36	45.3	\$ 831.71
		104	Anne K. Ramoras*	Systems Analyst	\$ 96.75	32.4	\$ 3,135.70
		112	Darlene M. Smithson	DSS Analyst	\$ 45.95	45.0	\$ 2,021.80
				Subtotal			\$ 7,172.47
22	Rolling Tide	105	Alice K. Johnson	Database Designer	\$105.00	65.7	\$ 6,793.50
		104	Anne K. Ramoras	Systems Analyst	\$ 96.75	48.4	\$ 4,682.70
		113	Delbert K. Joenbrood*	Applications Designer	\$ 48.10	23.6	\$ 1,135.16
		111	Geoff B. Wabash	Clerical Support	\$ 26.87	22.0	\$ 591.14
		106	William Smithfield	Programmer	\$ 35.75	12.8	\$ 457.60
				Subtotal			\$13,660.10
25	Starflight	107	Maria D. Alonzo	Programmer	\$ 35.75	25.6	\$ 879.45
		115	Travis B. Bawangi	Systems Analyst	\$ 96.75	45.8	\$ 4,431.15
		101	John G. News*	Database Designer	\$105.00	56.3	\$ 5,911.50
		114	Annelise Jones	Applications Designer	\$ 48.10	33.1	\$ 1,592.11
		108	Ralph B. Washington	Systems Analyst	\$ 96.75	23.6	\$ 2,283.30
		118	James J. Frommer	General Support	\$ 18.36	30.5	\$ 559.98
		112	Darlene M. Smithson	DSS Analyst	\$ 45.95	41.4	\$ 1,902.33
				Subtotal			\$17,559.82
							,
		1	I	1	1	1	\$48,942.09

Table name: RPT_FORMAT

Database name: Ch05_ConstructCo

	PROJ_NUM	PROJ_NAME	EMP_NUM	EMP_NAME	JOB_CLASS	CHG_HOUR	HOURS
•	15	Evergreen	103	June E. Arbough	Elect. Engineer	\$84.50	23.8
			101	John G. News	Database Designer	\$105.00	19.4
			105	Alice K. Johnson *	Database Designer	\$105.00	35.7
			106	William Smithfield	Programmer	\$35.75	12.6
			102	David H. Senior	Systems Analyst	\$96.75	23.8
	18	Amber Wave	114	Annelise Jones	Applications Designer	\$48.10	24.6
			118	James J. Frommer	General Support	\$18.36	45.3
			104	Anne K. Ramoras *	Systems Analyst	\$96.75	32.4
			112	Darlene M. Smithson	DSS Analyst	\$45.95	44.0
	22	Rolling Tide	105	Alice K. Johnson	Database Designer	\$105.00	64.7
			104	Anne K. Ramoras	Systems Analyst	\$96.75	48.4
			113	Delbert K. Joenbrood *	Applications Designer	\$48.10	23.6
			111	Geoff B. Wabash	Clerical Support	\$26.87	22.0
			106	William Smithfield	Programmer	\$35.75	12.8
	25	Starflight	107	Maria D. Alonzo	Programmer	\$35.75	24.6
		94900000000000000000000000000000000000	115	Travis B. Bawangi	Systems Analyst	\$96.75	45.8
			101	John G. News *	Database Designer	\$105.00	56.3
			114	Annelise Jones	Applications Designer	\$48.10	33.1
			108	Ralph B. Washington	Systems Analyst	\$96.75	23.6
			118	James J. Frommer	General Support	\$18.36	30.5
			112	Darlene M. Smithson	DSS Analyst	\$45.95	41.4

Table name: RPT_FORMAT

Database name: Ch05_ConstructCo

	PROJ_NUM	PROJ_NAME	EMP_NUM	EMP_NAME	JOB_CLASS	CHG_HOUR	HOURS
•	15	Evergreen	103	June E. Arbough	Elect. Engineer	\$84.50	23.8
			101	John G. News	Database Designer	\$105.00	19.4
			105	Alice K. Johnson *	Database Designer	\$105.00	35.7
			106	vVilliam Smithfield	Programmer	\$35.75	12.6
			102	David H. Senior	Systems Analyst	\$96.75	23.8
	18	Amber Wave	114	Annelise Jones	Applications Designer	\$48.10	24.6
			118	James J. Frommer	General Support	\$18.36	45.3
			104	Anne K. Ramoras *	Systems Analyst	\$96.75	32.4

RPT_FORMAT (PROJ_NUM, PROJ_NAME, EMP_NUM, EMP_NAME, JOB_CLASS, CHG_HOUR, HOURS)

Rules:

Each relation (table) must represent one and only one entity.

No data must repeat redundantly in different relations.

All the attributes must be dependant on the key attribute.

First Normal Form

- Eliminate repeating groups in individual tables.
- Create a separate table for each set of related data.
- Identify each set of related data with a primary key.

Second Normal Form

- Create separate tables for sets of values that apply to multiple records.
- Relate these tables with a foreign key.

Third Normal Form

• Eliminate fields that do not depend on the key.

First Normal Form

Eliminate repeating groups in individual tables.

Create a separate table for each set of related data.

• Identify each set of related data with a primary key.

First Normal Form

RPT_FORMAT (Proj_num, Proj_name, Emp_num, Emp_name, Job_class, Chg_hour, Hours)

- PROJ (Proj_num, Proj_name)
- EMPLOYEE (Emp_num, Emp_name, Job_class, Chg_hour, Hours)

Second Normal Form

Remove Partial Dependencies

Create separate tables for sets of values that apply to multiple records.

Relate these tables with a foreign key.

Each attribute must be FULLY DEPENDANT to the key attribute.

Second Normal Form

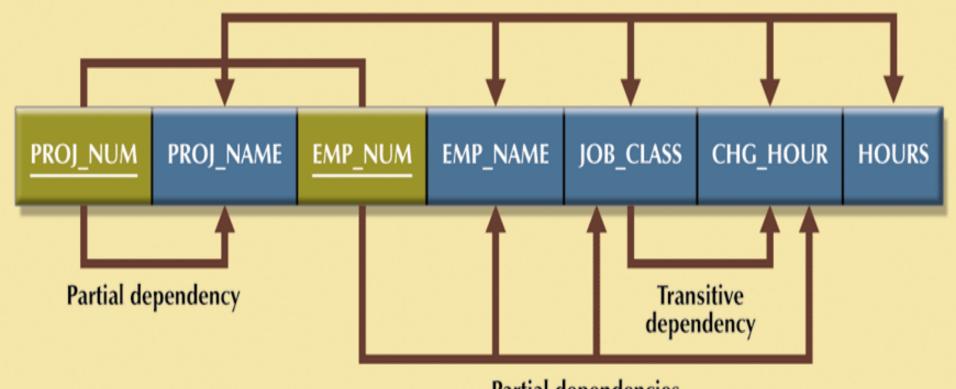
- PROJ (<u>Proj_num</u>, Proj_name)
- EMPLOYEE (<u>Emp_num</u>, Emp_name, Job_class, Chg_hour, Hours)
 - EMPLOYEE (<u>Emp_num</u>, Emp_name, Job_class, Chg_hour)
 - ASSIGN (<u>Emp_num, Proj_num, Hours</u>)

Third Normal Form

Remove Transitive Dependencies.

• Eliminate fields that do not depend on the key.

Search for another attribute to identify better than the key attribute.


Third Normal Form

- EMPLOYEE (<u>Emp_num</u>, Emp_name, Job_class, Chg_hour)
- ASSIGN (<u>Emp_num, Proj_num, Hours</u>)
 - EMPLOYEE (<u>Emp_num</u>, Emp_name, Job_class)
 - JOB (<u>Job_class</u>, Chg_hour)

1 st NF	Convert to Table Format,No repeating fields,		
	Define Key attributes.		
2 nd NF	1 st NF		
	Eliminate partial dependencies		
3 rd NF	2 nd NF		
	Eliminate transitive dependencies		

Partial dependencies

1NF (PROJ_NUM, EMP_NUM, PROJ_NAME, EMP_NAME, JOB_CLASS, CHG_HOURS, HOURS)

PARTIAL DEPENDENCIES:

(PROJ_NUM PROJ_NAME)
(EMP_NUM EMP_NAME, JOB_CLASS, CHG_HOUR)

TRANSITIVE DEPENDENCY:

(JOB CLASS — CHG_HOUR)

BIL3203-Databa